2019-10-28 14:16:55 -03:00

214 lines
5.8 KiB
C

#include "hid.h"
#include "i2c.h"
#include "timer.h"
#include "colors.h"
#include "screenshot.h" // for screenshots
#include "arm.h"
#include "fixp.h"
#include "shmem.h"
#define HID_TOUCH_MAXPOINT (0x1000)
#define HID_TOUCH_MIDPOINT (HID_TOUCH_MAXPOINT / 2)
static void SetNotificationLED(u32 period_ms, u32 rgb565_color)
{
u32 rgb888_color =
((rgb565_color >> 11) << (16+3) |
(rgb565_color >> 5) << (8+2) |
(rgb565_color << 3));
u32 args[] = {period_ms, rgb888_color};
PXI_DoCMD(PXI_NOTIFY_LED, args, 2);
}
// there's some weird thing going on when reading this
// with an LDRD instruction so for now they'll be two
// separate things - hopefully LTO won't get in the way
u32 HID_ReadState(void)
{
return ARM_GetSHMEM()->hid_state;
}
u32 HID_ReadRawTouchState(void)
{
return ARM_GetSHMEM()->hid_state >> 32;
}
// ts_mult indicates a scalar for each axis
// if |ts_mult| > 1 => point must be "scaled out"
// if |ts_mult| < 1 => point must be "scaled in"
// if ts_mult < 0 => axis is inverted
static fixp_t ts_mult[2];
// ts_org indicates the coordinate system origin
static int ts_org[2];
bool HID_TouchCalibratedTransform(u32 ts, u16 *x, u16 *y)
{
int xc, yc;
int tx, ty;
if (ts & BIT(31))
return false;
tx = HID_RAW_TX(ts) - HID_TOUCH_MIDPOINT;
ty = HID_RAW_TY(ts) - HID_TOUCH_MIDPOINT;
xc = FIXP_TO_INT(fixp_round(tx * ts_mult[0])) + ts_org[0];
yc = FIXP_TO_INT(fixp_round(ty * ts_mult[1])) + ts_org[1];
*x = clamp(xc, 0, (ts_org[0] * 2) - 1);
*y = clamp(yc, 0, (ts_org[1] * 2) - 1);
return true;
}
bool HID_ReadTouchState(u16 *x, u16 *y)
{
return HID_TouchCalibratedTransform(HID_ReadRawTouchState(), x, y);
}
bool HID_SetCalibrationData(const HID_CalibrationData *calibs, u32 point_cnt, u32 screen_w, u32 screen_h)
{
u32 mid_x, mid_y;
fixp_t avg_x, avg_y;
if (!screen_w || !screen_h || point_cnt <= 0 || point_cnt > 7)
return false;
mid_x = screen_w / 2;
mid_y = screen_h / 2;
avg_x = 0;
avg_y = 0;
for (u32 i = 0; i < point_cnt; i++) {
const HID_CalibrationData *data = &calibs[i];
fixp_t screen_x, screen_y, touch_x, touch_y;
// translate the [0, screen_w] x [0, screen_h] system
// to [-screen_w/2, screen_w/2] x [-screen_h/2, screen_h/2]
screen_x = INT_TO_FIXP(data->screen_x - mid_x);
screen_y = INT_TO_FIXP(data->screen_y - mid_y);
// same thing for raw touchscreen data
touch_x = INT_TO_FIXP(HID_RAW_TX(data->ts_raw) - HID_TOUCH_MIDPOINT);
touch_y = INT_TO_FIXP(HID_RAW_TY(data->ts_raw) - HID_TOUCH_MIDPOINT);
// if the data retrieved came right in the middle, it's invalid
if (!screen_x || !screen_y || !touch_x || !touch_y)
return false;
// prevent integer overflows by dividing in this step
avg_x += fixp_quotient(screen_x, touch_x * point_cnt);
avg_y += fixp_quotient(screen_y, touch_y * point_cnt);
}
// set state variables
ts_mult[0] = avg_x;
ts_mult[1] = avg_y;
ts_org[0] = mid_x;
ts_org[1] = mid_y;
return true;
}
const TouchBox* TouchBoxGet(u32* id, const u16 x, const u16 y, const TouchBox* tbs, const u32 tbn) {
// check if inside touchbox
for (u32 i = 0; !tbn || (i < tbn); i++) {
const TouchBox* tb = tbs + i;
if (tb->id == 0) break;
if ((x >= tb->x) && (y >= tb->y) &&
(x < tb->x + tb->w) && (y < tb->y + tb->h)) {
if (id) *id = tb->id;
return tb; // we know const is discarded here
}
}
if (id) *id = 0;
return NULL;
}
u32 InputWait(u32 timeout_sec) {
static u64 delay = 0;
u64 timer = timer_start();
u32 oldpad = HID_ReadState();
u32 oldcart = CART_STATE;
u32 oldsd = SD_STATE;
// enable notification LED if shell is closed
// (this means we're waiting for user input)
if (oldpad & SHELL_CLOSED) {
SetNotificationLED(1000, COLOR_GREEN);
while (HID_ReadState() & SHELL_CLOSED);
}
delay = delay ? 144 : 256;
do {
u32 newpad = HID_ReadState();
// handle closed shell (wait for open)
if (newpad & SHELL_CLOSED) {
while (HID_ReadState() & SHELL_CLOSED);
continue;
}
// no buttons pressed, check for I/O changes instead
if (!(newpad & ~(SHELL_OPEN|SHELL_CLOSED))) {
u32 state = CART_STATE;
if (state != oldcart)
return state ? CART_INSERT : CART_EJECT;
state = SD_STATE;
if (state != oldsd)
return state ? SD_INSERT : SD_EJECT;
oldpad = 0;
delay = 0;
continue;
}
// special case for dpad keys
// if any of those are held, don't wait for key changes
// but do insert a small latency to make
// sure any menus don't go flying off
if ((newpad == oldpad) &&
(!(newpad & BUTTON_ARROW) ||
(delay && (timer_msec(timer) < delay))))
continue;
// screenshot handling
if ((newpad & BUTTON_ANY) == (BUTTON_R1 | BUTTON_L1))
CreateScreenshot();
return newpad;
} while (!timeout_sec || (timeout_sec && (timer_sec(timer) < timeout_sec)));
return TIMEOUT_HID;
}
bool CheckButton(u32 button) {
return (HID_ReadState() & button) == button;
}
void ButtonToString(u32 button, char* str) {
const char* strings[] = { BUTTON_STRINGS };
*str = '\0';
if (button) {
u32 b = 0;
for (b = 0; !((button>>b)&0x1); b++);
if (b < countof(strings)) strcpy(str, strings[b]);
}
}
u32 StringToButton(char* str) {
const char* strings[] = { BUTTON_STRINGS };
u32 b = 0;
for (b = 0; b < countof(strings); b++)
if (strcmp(str, strings[b]) == 0) break;
return (b == countof(strings)) ? 0 : 1<<b;
}