mirror of
https://github.com/lltcggie/waifu2x-caffe.git
synced 2025-06-26 13:42:48 +00:00
849 lines
23 KiB
C++
849 lines
23 KiB
C++
#include "waifu2x.h"
|
||
#include <caffe/caffe.hpp>
|
||
#include <cudnn.h>
|
||
#include <mutex>
|
||
#include <opencv2/opencv.hpp>
|
||
#include <boost/filesystem.hpp>
|
||
#include <boost/algorithm/string.hpp>
|
||
#include <chrono>
|
||
#include <cuda_runtime.h>
|
||
|
||
|
||
#ifdef _DEBUG
|
||
#pragma comment(lib, "caffe-d.lib")
|
||
#pragma comment(lib, "proto-d.lib")
|
||
#pragma comment(lib, "libboost_system-vc120-mt-sgd-1_59.lib")
|
||
#pragma comment(lib, "libboost_thread-vc120-mt-sgd-1_59.lib")
|
||
#pragma comment(lib, "libboost_filesystem-vc120-mt-sgd-1_59.lib")
|
||
#pragma comment(lib, "glogd.lib")
|
||
#pragma comment(lib, "gflagsd.lib")
|
||
#pragma comment(lib, "libprotobufd.lib")
|
||
#pragma comment(lib, "libhdf5_hl_D.lib")
|
||
#pragma comment(lib, "libhdf5_D.lib")
|
||
#pragma comment(lib, "zlibstaticd.lib")
|
||
#pragma comment(lib, "libopenblasd.lib")
|
||
#pragma comment(lib, "cudart.lib")
|
||
#pragma comment(lib, "curand.lib")
|
||
#pragma comment(lib, "cublas.lib")
|
||
#pragma comment(lib, "cudnn.lib")
|
||
#pragma comment(lib, "mkl_intel_lp64.lib")
|
||
#pragma comment(lib, "mkl_intel_thread.lib")
|
||
#pragma comment(lib, "mkl_core.lib")
|
||
#pragma comment(lib, "libiomp5md.lib")
|
||
|
||
#pragma comment(lib, "IlmImfd.lib")
|
||
#pragma comment(lib, "libjasperd.lib")
|
||
#pragma comment(lib, "libjpegd.lib")
|
||
#pragma comment(lib, "libpngd.lib")
|
||
#pragma comment(lib, "libtiffd.lib")
|
||
#pragma comment(lib, "opencv_calib3d249d.lib")
|
||
#pragma comment(lib, "opencv_contrib249d.lib")
|
||
#pragma comment(lib, "opencv_core249d.lib")
|
||
#pragma comment(lib, "opencv_highgui249d.lib")
|
||
#pragma comment(lib, "opencv_imgproc249d.lib")
|
||
#else
|
||
#pragma comment(lib, "caffe.lib")
|
||
#pragma comment(lib, "proto.lib")
|
||
#pragma comment(lib, "libboost_system-vc120-mt-s-1_59.lib")
|
||
#pragma comment(lib, "libboost_thread-vc120-mt-s-1_59.lib")
|
||
#pragma comment(lib, "libboost_filesystem-vc120-mt-s-1_59.lib")
|
||
#pragma comment(lib, "glog.lib")
|
||
#pragma comment(lib, "gflags.lib")
|
||
#pragma comment(lib, "libprotobuf.lib")
|
||
#pragma comment(lib, "libhdf5_hl.lib")
|
||
#pragma comment(lib, "libhdf5.lib")
|
||
#pragma comment(lib, "zlibstatic.lib")
|
||
#pragma comment(lib, "cudart.lib")
|
||
#pragma comment(lib, "curand.lib")
|
||
#pragma comment(lib, "cublas.lib")
|
||
#pragma comment(lib, "cudnn.lib")
|
||
#pragma comment(lib, "mkl_intel_lp64.lib")
|
||
#pragma comment(lib, "mkl_intel_thread.lib")
|
||
#pragma comment(lib, "mkl_core.lib")
|
||
#pragma comment(lib, "libiomp5md.lib")
|
||
|
||
#pragma comment(lib, "IlmImf.lib")
|
||
#pragma comment(lib, "libjasper.lib")
|
||
#pragma comment(lib, "libjpeg.lib")
|
||
#pragma comment(lib, "libpng.lib")
|
||
#pragma comment(lib, "libtiff.lib")
|
||
#pragma comment(lib, "opencv_calib3d249.lib")
|
||
#pragma comment(lib, "opencv_contrib249.lib")
|
||
#pragma comment(lib, "opencv_core249.lib")
|
||
#pragma comment(lib, "opencv_highgui249.lib")
|
||
#pragma comment(lib, "opencv_imgproc249.lib")
|
||
#endif
|
||
|
||
// <20><><EFBFBD>͉摜<CD89>̃I<CC83>t<EFBFBD>Z<EFBFBD>b<EFBFBD>g
|
||
const int offset = 0;
|
||
// srcnn.prototxt<78>Œ<EFBFBD><C592>`<60><><EFBFBD>ꂽ<EFBFBD><EA82BD><EFBFBD>C<EFBFBD><43><EFBFBD>[<5B>̐<EFBFBD>
|
||
const int layer_num = 7;
|
||
|
||
const int ConvertMode = CV_RGB2YUV;
|
||
const int ConvertInverseMode = CV_YUV2RGB;
|
||
|
||
// <20>Œ<EFBFBD><C592><EFBFBD><EFBFBD>K<EFBFBD>v<EFBFBD><76>CUDA<44>h<EFBFBD><68><EFBFBD>C<EFBFBD>o<EFBFBD>[<5B>̃o<CC83>[<5B>W<EFBFBD><57><EFBFBD><EFBFBD>
|
||
const int MinCudaDriverVersion = 6050;
|
||
|
||
static std::once_flag waifu2x_once_flag;
|
||
static std::once_flag waifu2x_cudnn_once_flag;
|
||
static std::once_flag waifu2x_cuda_once_flag;
|
||
|
||
#ifndef CUDA_CHECK_WAIFU2X
|
||
#define CUDA_CHECK_WAIFU2X(condition) \
|
||
do { \
|
||
cudaError_t error = condition; \
|
||
if(error != cudaSuccess) throw error; \
|
||
} while (0)
|
||
#endif
|
||
|
||
#define CUDA_HOST_SAFE_FREE(ptr) \
|
||
do { \
|
||
if (ptr) { \
|
||
cudaFreeHost(ptr); \
|
||
ptr = nullptr; \
|
||
} \
|
||
} while (0)
|
||
|
||
#define SAFE_DELETE_WAIFU2X(ptr) \
|
||
do { \
|
||
if (ptr) { \
|
||
delete [] ptr; \
|
||
ptr = nullptr; \
|
||
} \
|
||
} while (0)
|
||
|
||
namespace
|
||
{
|
||
class IgnoreErrorCV
|
||
{
|
||
private:
|
||
static int handleError(int status, const char* func_name,
|
||
const char* err_msg, const char* file_name,
|
||
int line, void* userdata)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
public:
|
||
IgnoreErrorCV()
|
||
{
|
||
cv::redirectError(handleError);
|
||
}
|
||
};
|
||
|
||
IgnoreErrorCV g_IgnoreErrorCV;
|
||
}
|
||
|
||
Waifu2x::Waifu2x() : is_inited(false), isCuda(false), input_block(nullptr), dummy_data(nullptr), output_block(nullptr)
|
||
{
|
||
}
|
||
|
||
Waifu2x::~Waifu2x()
|
||
{
|
||
destroy();
|
||
}
|
||
|
||
// <20>摜<EFBFBD><E6919C><EFBFBD>ǂݍ<C782><DD8D><EFBFBD><EFBFBD>Œl<C592><6C>0.0f<EFBFBD>`1.0f<EFBFBD>͈̔͂ɕϊ<EFBFBD>
|
||
Waifu2x::eWaifu2xError Waifu2x::LoadMat(cv::Mat &float_image, const uint32_t* source, int width, int height)
|
||
{
|
||
float_image = cv::Mat(cv::Size(width, height), CV_MAKETYPE(CV_8U, 4));
|
||
|
||
const auto LinePixel = float_image.step1() / float_image.channels();
|
||
const auto Channel = float_image.channels();
|
||
const auto Width = float_image.size().width;
|
||
const auto Height = float_image.size().height;
|
||
|
||
const uint8_t *sptr = (const uint8_t *)source;
|
||
auto ptr = float_image.data;
|
||
for (int i = 0; i < height; i++)
|
||
{
|
||
for (int j = 0; j < width; j++)
|
||
{
|
||
for (int ch = 0; ch < Channel; ch++)
|
||
ptr[(i * LinePixel + j) * 4 + ch] = sptr[(i * width + j) * 4 + ch];
|
||
}
|
||
}
|
||
|
||
// RGB<47><42><EFBFBD><EFBFBD><EFBFBD><EFBFBD>BGR<47>ɕϊ<C995>
|
||
/*
|
||
for (int i = 0; i < height; i++)
|
||
{
|
||
for (int j = 0; j < width; j++)
|
||
std::swap(ptr[(i * LinePixel + j) * 4 + 0], ptr[(i * LinePixel + j) * 4 + 2]);
|
||
}
|
||
*/
|
||
|
||
cv::Mat convert;
|
||
float_image.convertTo(convert, CV_32F, 1.0 / 255.0);
|
||
float_image.release();
|
||
|
||
{
|
||
// <20>A<EFBFBD><41><EFBFBD>t<EFBFBD>@<40>`<60><><EFBFBD><EFBFBD><EFBFBD>l<EFBFBD><6C><EFBFBD>t<EFBFBD><74><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>烿<EFBFBD><E783BF><EFBFBD>Z<EFBFBD>ς݂ɂ<DD82><C982><EFBFBD>
|
||
|
||
std::vector<cv::Mat> planes;
|
||
cv::split(convert, planes);
|
||
|
||
cv::Mat w = planes[3];
|
||
|
||
planes[0] = planes[0].mul(w);
|
||
planes[1] = planes[1].mul(w);
|
||
planes[2] = planes[2].mul(w);
|
||
|
||
cv::merge(planes, convert);
|
||
}
|
||
|
||
float_image = convert;
|
||
|
||
return eWaifu2xError_OK;
|
||
}
|
||
|
||
// <20><><EFBFBD>͉摜<CD89><E6919C>(Photoshop<6F>ł<EFBFBD><C582><EFBFBD>)<29>L<EFBFBD><4C><EFBFBD><EFBFBD><EFBFBD>o<EFBFBD>X<EFBFBD>T<EFBFBD>C<EFBFBD>Y<EFBFBD><59>output_size<7A>̔{<7B><><EFBFBD>ɕύX
|
||
// <20>摜<EFBFBD>͍<EFBFBD><CD8D><EFBFBD><EFBFBD>z<EFBFBD>u<EFBFBD>A<EFBFBD>]<5D><><EFBFBD><EFBFBD>cv::BORDER_REPLICATE<54>Ŗ<EFBFBD><C596>߂<EFBFBD>
|
||
Waifu2x::eWaifu2xError Waifu2x::PaddingImage(const cv::Mat &input, cv::Mat &output)
|
||
{
|
||
const auto h_blocks = (int)floor(input.size().width / output_size) + (input.size().width % output_size == 0 ? 0 : 1);
|
||
const auto w_blocks = (int)floor(input.size().height / output_size) + (input.size().height % output_size == 0 ? 0 : 1);
|
||
const auto height = offset + h_blocks * output_size + offset;
|
||
const auto width = offset + w_blocks * output_size + offset;
|
||
const auto pad_h1 = offset;
|
||
const auto pad_w1 = offset;
|
||
const auto pad_h2 = (height - offset) - input.size().width;
|
||
const auto pad_w2 = (width - offset) - input.size().height;
|
||
|
||
cv::copyMakeBorder(input, output, pad_w1, pad_w2, pad_h1, pad_h2, cv::BORDER_REPLICATE);
|
||
|
||
return eWaifu2xError_OK;
|
||
}
|
||
|
||
// <20>摜<EFBFBD><E6919C>cv::INTER_NEAREST<53>œ<EFBFBD><C593>{<7B>Ɋg<C98A>債<EFBFBD>āAPaddingImage()<29>Ńp<C583>f<EFBFBD>B<EFBFBD><42><EFBFBD>O<EFBFBD><4F><EFBFBD><EFBFBD>
|
||
Waifu2x::eWaifu2xError Waifu2x::Zoom2xAndPaddingImage(const cv::Mat &input, cv::Mat &output, cv::Size_<int> &zoom_size)
|
||
{
|
||
zoom_size = input.size();
|
||
zoom_size.width *= 2;
|
||
zoom_size.height *= 2;
|
||
|
||
cv::Mat zoom_image;
|
||
cv::resize(input, zoom_image, zoom_size, 0.0, 0.0, cv::INTER_NEAREST);
|
||
|
||
return PaddingImage(zoom_image, output);
|
||
}
|
||
|
||
// <20><><EFBFBD>͉摜<CD89><E6919C>zoom_size<7A>̑傫<CC91><E582AB><EFBFBD><EFBFBD>cv::INTER_CUBIC<49>Ŋg<C58A>債<EFBFBD>A<EFBFBD>F<EFBFBD><46><EFBFBD><EFBFBD><EFBFBD>݂̂<CC82><DD82>c<EFBFBD><63>
|
||
Waifu2x::eWaifu2xError Waifu2x::CreateZoomColorImage(const cv::Mat &float_image, const cv::Size_<int> &zoom_size, std::vector<cv::Mat> &cubic_planes)
|
||
{
|
||
cv::Mat zoom_cubic_image;
|
||
cv::resize(float_image, zoom_cubic_image, zoom_size, 0.0, 0.0, cv::INTER_CUBIC);
|
||
|
||
cv::Mat converted_cubic_image;
|
||
cv::cvtColor(zoom_cubic_image, converted_cubic_image, ConvertMode);
|
||
zoom_cubic_image.release();
|
||
|
||
cv::split(converted_cubic_image, cubic_planes);
|
||
converted_cubic_image.release();
|
||
|
||
// <20><><EFBFBD><EFBFBD>Y<EFBFBD><59><EFBFBD><EFBFBD><EFBFBD>͎g<CD8E><67><EFBFBD>Ȃ<EFBFBD><C882>̂ʼn<CC82><C589><EFBFBD>
|
||
cubic_planes[0].release();
|
||
|
||
return eWaifu2xError_OK;
|
||
}
|
||
|
||
// <20><><EFBFBD>f<EFBFBD><66><EFBFBD>t<EFBFBD>@<40>C<EFBFBD><43><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>l<EFBFBD>b<EFBFBD>g<EFBFBD><67><EFBFBD>[<5B>N<EFBFBD><4E><EFBFBD>\<5C>z
|
||
// process<73><73>cudnn<6E><6E><EFBFBD>w<EFBFBD>肳<EFBFBD><E882B3><EFBFBD>Ȃ<EFBFBD><C882><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ꍇ<EFBFBD><EA8D87>cuDNN<4E><4E><EFBFBD>Ăяo<D18F><6F><EFBFBD><EFBFBD><EFBFBD>Ȃ<EFBFBD><C882>悤<EFBFBD>ɕύX<CF8D><58><EFBFBD><EFBFBD>
|
||
Waifu2x::eWaifu2xError Waifu2x::ConstractNet(boost::shared_ptr<caffe::Net<float>> &net, const std::string &model_path, const std::string ¶m_path, const std::string &process)
|
||
{
|
||
const std::string caffemodel_path = param_path + ".caffemodel";
|
||
const std::string modelbin_path = model_path + ".protobin";
|
||
|
||
FILE *fp = fopen(caffemodel_path.c_str(), "rb");
|
||
const bool isModelExist = fp != nullptr;
|
||
if (fp) fclose(fp);
|
||
|
||
fp = fopen(modelbin_path.c_str(), "rb");
|
||
const bool isModelBinExist = fp != nullptr;
|
||
if (fp) fclose(fp);
|
||
|
||
caffe::NetParameter param;
|
||
if (isModelExist && isModelBinExist && caffe::ReadProtoFromBinaryFile(modelbin_path, ¶m))
|
||
{
|
||
const auto ret = SetParameter(param);
|
||
if (ret != eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
net = boost::shared_ptr<caffe::Net<float>>(new caffe::Net<float>(param));
|
||
net->CopyTrainedLayersFrom(caffemodel_path);
|
||
|
||
input_plane = param.input_dim(1);
|
||
}
|
||
else
|
||
return eWaifu2xError_FailedConstructModel;
|
||
|
||
return eWaifu2xError_OK;
|
||
}
|
||
|
||
Waifu2x::eWaifu2xError Waifu2x::SetParameter(caffe::NetParameter ¶m) const
|
||
{
|
||
param.mutable_state()->set_phase(caffe::TEST);
|
||
|
||
{
|
||
auto mid = param.mutable_input_dim();
|
||
|
||
if (mid->size() != 4)
|
||
return eWaifu2xError_FailedParseModelFile;
|
||
|
||
*mid->Mutable(0) = batch_size;
|
||
*mid->Mutable(2) = input_block_size;
|
||
*mid->Mutable(3) = input_block_size;
|
||
}
|
||
|
||
for (int i = 0; i < param.layer_size(); i++)
|
||
{
|
||
caffe::LayerParameter *layer_param = param.mutable_layer(i);
|
||
const std::string& type = layer_param->type();
|
||
if (type == "Convolution")
|
||
{
|
||
if (process == "cudnn")
|
||
layer_param->mutable_convolution_param()->set_engine(caffe::ConvolutionParameter_Engine_CUDNN);
|
||
else
|
||
layer_param->mutable_convolution_param()->set_engine(caffe::ConvolutionParameter_Engine_CAFFE);
|
||
}
|
||
else if (type == "ReLU")
|
||
{
|
||
if (process == "cudnn")
|
||
layer_param->mutable_relu_param()->set_engine(caffe::ReLUParameter_Engine_CUDNN);
|
||
else
|
||
layer_param->mutable_relu_param()->set_engine(caffe::ReLUParameter_Engine_CAFFE);
|
||
}
|
||
}
|
||
|
||
return eWaifu2xError_OK;
|
||
}
|
||
|
||
// <20>l<EFBFBD>b<EFBFBD>g<EFBFBD><67><EFBFBD>[<5B>N<EFBFBD><4E><EFBFBD>g<EFBFBD><67><EFBFBD>ĉ摜<C489><E6919C><EFBFBD>č\<5C>z<EFBFBD><7A><EFBFBD><EFBFBD>
|
||
Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<float>> net, cv::Mat &im)
|
||
{
|
||
const auto Height = im.size().height;
|
||
const auto Width = im.size().width;
|
||
const auto Line = im.step1();
|
||
|
||
assert(Width % output_size == 0);
|
||
assert(Height % output_size == 0);
|
||
|
||
assert(im.channels() == 1 || im.channels() == 3);
|
||
|
||
cv::Mat outim(im.rows, im.cols, im.type());
|
||
|
||
// float *imptr = (float *)im.data;
|
||
float *imptr = (float *)outim.data;
|
||
|
||
try
|
||
{
|
||
auto input_blobs = net->input_blobs();
|
||
auto input_blob = net->input_blobs()[0];
|
||
|
||
input_blob->Reshape(batch_size, input_plane, input_block_size, input_block_size);
|
||
|
||
assert(im.channels() == input_plane);
|
||
assert(input_blob->shape(1) == input_plane);
|
||
|
||
const int WidthNum = Width / output_size;
|
||
const int HeightNum = Height / output_size;
|
||
|
||
const int BlockNum = WidthNum * HeightNum;
|
||
|
||
const int input_block_plane_size = input_block_size * input_block_size * input_plane;
|
||
const int output_block_plane_size = output_block_size * output_block_size * input_plane;
|
||
|
||
const int output_padding = inner_padding + outer_padding - layer_num;
|
||
|
||
// <20>摜<EFBFBD><E6919C>(<28><><EFBFBD><EFBFBD><EF8381><EFBFBD><EFBFBD><EFBFBD>̓s<CC93><73><EFBFBD><EFBFBD>)output_size*output_size<7A>ɕ<EFBFBD><C995><EFBFBD><EFBFBD>čč\<5C>z<EFBFBD><7A><EFBFBD><EFBFBD>
|
||
for (int num = 0; num < BlockNum; num += batch_size)
|
||
{
|
||
const int processNum = (BlockNum - num) >= batch_size ? batch_size : BlockNum - num;
|
||
|
||
if (processNum < batch_size)
|
||
input_blob->Reshape(processNum, input_plane, input_block_size, input_block_size);
|
||
|
||
for (int n = 0; n < processNum; n++)
|
||
{
|
||
const int wn = (num + n) % WidthNum;
|
||
const int hn = (num + n) / WidthNum;
|
||
|
||
const int w = wn * output_size;
|
||
const int h = hn * output_size;
|
||
|
||
if (w + crop_size <= Width && h + crop_size <= Height)
|
||
{
|
||
int x, y;
|
||
x = w - inner_padding;
|
||
y = h - inner_padding;
|
||
|
||
int width, height;
|
||
|
||
width = crop_size + inner_padding * 2;
|
||
height = crop_size + inner_padding * 2;
|
||
|
||
int top, bottom, left, right;
|
||
|
||
top = outer_padding;
|
||
bottom = outer_padding;
|
||
left = outer_padding;
|
||
right = outer_padding;
|
||
|
||
if (x < 0)
|
||
{
|
||
left += -x;
|
||
width -= -x;
|
||
x = 0;
|
||
}
|
||
|
||
if (x + width > Width)
|
||
{
|
||
right += (x + width) - Width;
|
||
width = Width - x;
|
||
}
|
||
|
||
if (y < 0)
|
||
{
|
||
top += -y;
|
||
height -= -y;
|
||
y = 0;
|
||
}
|
||
|
||
if (y + height > Height)
|
||
{
|
||
bottom += (y + height) - Height;
|
||
height = Height - y;
|
||
}
|
||
|
||
cv::Mat someimg = im(cv::Rect(x, y, width, height));
|
||
|
||
cv::Mat someborderimg;
|
||
// <20>摜<EFBFBD>𒆉<EFBFBD><F0928689>Ƀp<C983>f<EFBFBD>B<EFBFBD><42><EFBFBD>O<EFBFBD>B<EFBFBD>]<5D><><EFBFBD><EFBFBD>cv::BORDER_REPLICATE<54>Ŗ<EFBFBD><C596>߂<EFBFBD>
|
||
// <20><><EFBFBD><EFBFBD>im<69>ʼn<EFBFBD><C589>f<EFBFBD><66><EFBFBD><EFBFBD><EFBFBD>݂<EFBFBD><DD82>镔<EFBFBD><E99594><EFBFBD>͗]<5D><><EFBFBD>ƔF<C694><46><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ȃ<EFBFBD><C882><EFBFBD><EFBFBD>Ainner_padding<6E><67>layer_num<75><6D>outer_padding<6E><67>1<EFBFBD>ȏ<EFBFBD><C88F>Ȃ炻<C882><E782BB><EFBFBD>̕<EFBFBD><CC95><EFBFBD><EFBFBD>̉<EFBFBD><CC89>f<EFBFBD>͌<EFBFBD><CD8C>ʉ摜<CA89>Ƃ<EFBFBD><C682>Ď<EFBFBD><C48E><EFBFBD><EFBFBD>o<EFBFBD><6F><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɂ͉e<CD89><65><EFBFBD><EFBFBD><EFBFBD>Ȃ<EFBFBD>
|
||
cv::copyMakeBorder(someimg, someborderimg, top, bottom, left, right, cv::BORDER_REPLICATE);
|
||
someimg.release();
|
||
|
||
// <20>摜<EFBFBD><EFBFBD><F092BC97>ɕϊ<C995>
|
||
{
|
||
float *fptr = input_block + (input_block_plane_size * n);
|
||
const float *uptr = (const float *)someborderimg.data;
|
||
|
||
const auto Line = someborderimg.step1();
|
||
|
||
if (someborderimg.channels() == 1)
|
||
{
|
||
if (input_block_size == Line)
|
||
memcpy(fptr, uptr, input_block_size * input_block_size * sizeof(float));
|
||
else
|
||
{
|
||
for (int i = 0; i < input_block_size; i++)
|
||
memcpy(fptr + i * input_block_size, uptr + i * Line, input_block_size * sizeof(float));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
const auto LinePixel = someborderimg.step1() / someborderimg.channels();
|
||
const auto Channel = someborderimg.channels();
|
||
const auto Width = someborderimg.size().width;
|
||
const auto Height = someborderimg.size().height;
|
||
|
||
for (int i = 0; i < Height; i++)
|
||
{
|
||
for (int j = 0; j < LinePixel; j++)
|
||
{
|
||
for (int ch = 0; ch < Channel; ch++)
|
||
fptr[(ch * Height + i) * Width + j] = uptr[(i * LinePixel + j) * Channel + ch];
|
||
}
|
||
}
|
||
|
||
/*
|
||
{
|
||
cv::Mat im(someborderimg.size(), CV_32F, fptr, Width * sizeof(float));
|
||
|
||
cv::Mat write_iamge;
|
||
im.convertTo(write_iamge, CV_8U, 255.0);
|
||
im.release();
|
||
|
||
if (!cv::imwrite("test_in.png", write_iamge))
|
||
return eWaifu2xError_FailedOpenOutputFile;
|
||
}
|
||
*/
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
assert(input_blob->count() == input_block_plane_size * processNum);
|
||
|
||
// <20>l<EFBFBD>b<EFBFBD>g<EFBFBD><67><EFBFBD>[<5B>N<EFBFBD>ɉ摜<C989><E6919C><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||
input_blob->set_cpu_data(input_block);
|
||
|
||
// <20>v<EFBFBD>Z
|
||
auto out = net->ForwardPrefilled(nullptr);
|
||
|
||
auto b = out[0];
|
||
|
||
assert(b->count() == output_block_plane_size * processNum);
|
||
|
||
const float *ptr = nullptr;
|
||
|
||
if (caffe::Caffe::mode() == caffe::Caffe::CPU)
|
||
ptr = b->cpu_data();
|
||
else
|
||
ptr = b->gpu_data();
|
||
|
||
caffe::caffe_copy(output_block_plane_size * processNum, ptr, output_block);
|
||
|
||
for (int n = 0; n < processNum; n++)
|
||
{
|
||
const int wn = (num + n) % WidthNum;
|
||
const int hn = (num + n) / WidthNum;
|
||
|
||
const int w = wn * output_size;
|
||
const int h = hn * output_size;
|
||
|
||
const float *fptr = output_block + (output_block_plane_size * n);
|
||
|
||
// <20><><EFBFBD>ʂ<EFBFBD><CA82>o<EFBFBD>͉摜<CD89>ɃR<C983>s<EFBFBD>[
|
||
if (outim.channels() == 1)
|
||
{
|
||
for (int i = 0; i < crop_size; i++)
|
||
memcpy(imptr + (h + i) * Line + w, fptr + (i + output_padding) * output_block_size + output_padding, crop_size * sizeof(float));
|
||
}
|
||
else
|
||
{
|
||
const auto LinePixel = outim.step1() / outim.channels();
|
||
const auto Channel = outim.channels();
|
||
|
||
for (int i = 0; i < crop_size; i++)
|
||
{
|
||
for (int j = 0; j < crop_size; j++)
|
||
{
|
||
for (int ch = 0; ch < Channel; ch++)
|
||
imptr[((h + i) * LinePixel + (w + j)) * Channel + ch] = fptr[(ch * output_block_size + i + output_padding) * output_block_size + j + output_padding];
|
||
}
|
||
}
|
||
|
||
/*
|
||
{
|
||
cv::Mat im(someborderimg.size(), CV_32F, fptr, Width * sizeof(float));
|
||
|
||
cv::Mat write_iamge;
|
||
im.convertTo(write_iamge, CV_8U, 255.0);
|
||
im.release();
|
||
|
||
if (!cv::imwrite("test_in.png", write_iamge))
|
||
return eWaifu2xError_FailedOpenOutputFile;
|
||
}
|
||
*/
|
||
}
|
||
}
|
||
}
|
||
}
|
||
catch (...)
|
||
{
|
||
return eWaifu2xError_FailedProcessCaffe;
|
||
}
|
||
|
||
im = outim;
|
||
|
||
return eWaifu2xError_OK;
|
||
}
|
||
|
||
Waifu2x::eWaifu2xError Waifu2x::init(int argc, char** argv, const std::string &Mode, const int NoiseLevel, const std::string &ModelDir, const std::string &Process,
|
||
const int CropSize, const int BatchSize)
|
||
{
|
||
Waifu2x::eWaifu2xError ret;
|
||
|
||
if (is_inited)
|
||
return eWaifu2xError_OK;
|
||
|
||
try
|
||
{
|
||
mode = Mode;
|
||
noise_level = NoiseLevel;
|
||
model_dir = ModelDir;
|
||
process = Process;
|
||
|
||
crop_size = CropSize;
|
||
batch_size = BatchSize;
|
||
|
||
inner_padding = layer_num;
|
||
outer_padding = 1;
|
||
|
||
output_size = crop_size - offset * 2;
|
||
input_block_size = crop_size + (inner_padding + outer_padding) * 2;
|
||
original_width_height = 128 + layer_num * 2;
|
||
|
||
output_block_size = crop_size + (inner_padding + outer_padding - layer_num) * 2;
|
||
|
||
std::call_once(waifu2x_once_flag, [argc, argv]()
|
||
{
|
||
assert(argc >= 1);
|
||
|
||
int tmpargc = 1;
|
||
char* tmpargvv[] = { argv[0] };
|
||
char** tmpargv = tmpargvv;
|
||
// glog<6F><67><EFBFBD>̏<EFBFBD><CC8F><EFBFBD><EFBFBD><EFBFBD>
|
||
caffe::GlobalInit(&tmpargc, &tmpargv);
|
||
});
|
||
|
||
const auto cuDNNCheckStartTime = std::chrono::system_clock::now();
|
||
|
||
if (process == "gpu")
|
||
process = "cudnn";
|
||
|
||
const auto cuDNNCheckEndTime = std::chrono::system_clock::now();
|
||
|
||
boost::filesystem::path mode_dir_path(model_dir);
|
||
if (!mode_dir_path.is_absolute()) // model_dir<69><72><EFBFBD><EFBFBD><EFBFBD>p<CE83>X<EFBFBD>Ȃ<EFBFBD><C882><EFBFBD><EFBFBD>p<CE83>X<EFBFBD>ɒ<EFBFBD><C992><EFBFBD>
|
||
{
|
||
// <20>܂<EFBFBD><DC82>̓J<CD83><4A><EFBFBD><EFBFBD><EFBFBD>g<EFBFBD>f<EFBFBD>B<EFBFBD><42><EFBFBD>N<EFBFBD>g<EFBFBD><67><EFBFBD><EFBFBD><EFBFBD>ɂ<EFBFBD><C982>邩<EFBFBD>T<EFBFBD><54>
|
||
mode_dir_path = boost::filesystem::absolute(model_dir);
|
||
if (!boost::filesystem::exists(mode_dir_path) && argc >= 1) // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>argv[0]<5D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>s<EFBFBD>t<EFBFBD>@<40>C<EFBFBD><43><EFBFBD>̂<EFBFBD><CC82><EFBFBD><EFBFBD>t<EFBFBD>H<EFBFBD><48><EFBFBD>_<EFBFBD>𐄒肵<F0908492>A<EFBFBD><41><EFBFBD>̃t<CC83>H<EFBFBD><48><EFBFBD>_<EFBFBD><5F><EFBFBD>ɂ<EFBFBD><C982>邩<EFBFBD>T<EFBFBD><54>
|
||
{
|
||
boost::filesystem::path a0(argv[0]);
|
||
if (a0.is_absolute())
|
||
mode_dir_path = a0.branch_path() / model_dir;
|
||
}
|
||
}
|
||
|
||
if (!boost::filesystem::exists(mode_dir_path))
|
||
return eWaifu2xError_FailedOpenModelFile;
|
||
|
||
if (process == "cpu")
|
||
{
|
||
caffe::Caffe::set_mode(caffe::Caffe::CPU);
|
||
isCuda = false;
|
||
}
|
||
else
|
||
{
|
||
caffe::Caffe::set_mode(caffe::Caffe::GPU);
|
||
isCuda = true;
|
||
}
|
||
|
||
if (mode == "noise" || mode == "noise_scale" || mode == "auto_scale")
|
||
{
|
||
const std::string model_path = (mode_dir_path / "srcnn.prototxt").string();
|
||
const std::string param_path = (mode_dir_path / ("noise" + std::to_string(noise_level) + "_model.json")).string();
|
||
|
||
ret = ConstractNet(net_noise, model_path, param_path, process);
|
||
if (ret != eWaifu2xError_OK)
|
||
return ret;
|
||
}
|
||
|
||
if (mode == "scale" || mode == "noise_scale" || mode == "auto_scale")
|
||
{
|
||
const std::string model_path = (mode_dir_path / "srcnn.prototxt").string();
|
||
const std::string param_path = (mode_dir_path / "scale2.0x_model.json").string();
|
||
|
||
ret = ConstractNet(net_scale, model_path, param_path, process);
|
||
if (ret != eWaifu2xError_OK)
|
||
return ret;
|
||
}
|
||
|
||
const int input_block_plane_size = input_block_size * input_block_size * input_plane;
|
||
const int output_block_plane_size = output_block_size * output_block_size * input_plane;
|
||
|
||
if (isCuda)
|
||
{
|
||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&input_block, sizeof(float) * input_block_plane_size * batch_size, cudaHostAllocWriteCombined));
|
||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&dummy_data, sizeof(float) * input_block_plane_size * batch_size, cudaHostAllocWriteCombined));
|
||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&output_block, sizeof(float) * output_block_plane_size * batch_size, cudaHostAllocDefault));
|
||
}
|
||
else
|
||
{
|
||
input_block = new float[input_block_plane_size * batch_size];
|
||
dummy_data = new float[input_block_plane_size * batch_size];
|
||
output_block = new float[output_block_plane_size * batch_size];
|
||
}
|
||
|
||
for (size_t i = 0; i < input_block_plane_size * batch_size; i++)
|
||
dummy_data[i] = 0.0f;
|
||
|
||
is_inited = true;
|
||
}
|
||
catch (...)
|
||
{
|
||
return eWaifu2xError_InvalidParameter;
|
||
}
|
||
|
||
return eWaifu2xError_OK;
|
||
}
|
||
|
||
void Waifu2x::destroy()
|
||
{
|
||
net_noise.reset();
|
||
net_scale.reset();
|
||
|
||
if (isCuda)
|
||
{
|
||
CUDA_HOST_SAFE_FREE(input_block);
|
||
CUDA_HOST_SAFE_FREE(dummy_data);
|
||
CUDA_HOST_SAFE_FREE(output_block);
|
||
}
|
||
else
|
||
{
|
||
SAFE_DELETE_WAIFU2X(input_block);
|
||
SAFE_DELETE_WAIFU2X(dummy_data);
|
||
SAFE_DELETE_WAIFU2X(output_block);
|
||
}
|
||
|
||
is_inited = false;
|
||
}
|
||
|
||
Waifu2x::eWaifu2xError Waifu2x::waifu2x(int factor, const uint32_t* source, uint32_t* dest, int width, int height)
|
||
{
|
||
Waifu2x::eWaifu2xError ret;
|
||
|
||
if (!is_inited)
|
||
return eWaifu2xError_NotInitialized;
|
||
|
||
cv::Mat float_image;
|
||
ret = LoadMat(float_image, source, width, height);
|
||
if (ret != eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
cv::Mat im;
|
||
if (input_plane == 1)
|
||
return eWaifu2xError_NotInitialized;
|
||
else
|
||
{
|
||
std::vector<cv::Mat> planes;
|
||
cv::split(float_image, planes);
|
||
|
||
if (float_image.channels() == 4)
|
||
planes.resize(3);
|
||
|
||
// BGR<47><52><EFBFBD><EFBFBD>RGB<47>ɂ<EFBFBD><C982><EFBFBD>
|
||
//std::swap(planes[0], planes[2]);
|
||
|
||
cv::merge(planes, im);
|
||
}
|
||
cv::Size_<int> image_size = im.size();
|
||
|
||
const bool isReconstructNoise = mode == "noise" || mode == "noise_scale" || mode == "auto_scale";
|
||
const bool isReconstructScale = mode == "scale" || mode == "noise_scale";
|
||
|
||
if (isReconstructNoise)
|
||
{
|
||
PaddingImage(im, im);
|
||
|
||
ret = ReconstructImage(net_noise, im);
|
||
if (ret != eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
// <20>p<EFBFBD>f<EFBFBD>B<EFBFBD><42><EFBFBD>O<EFBFBD><4F><EFBFBD><EFBFBD><EFBFBD>蕥<EFBFBD><E895A5>
|
||
im = im(cv::Rect(offset, offset, image_size.width, image_size.height));
|
||
}
|
||
|
||
const int scale2 = ceil(log2((double)factor));
|
||
const double shrinkRatio = (double)factor / std::pow(2.0, (double)scale2);
|
||
|
||
if (isReconstructScale)
|
||
{
|
||
bool isError = false;
|
||
for (int i = 0; i < scale2; i++)
|
||
{
|
||
Zoom2xAndPaddingImage(im, im, image_size);
|
||
|
||
ret = ReconstructImage(net_scale, im);
|
||
if (ret != eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
// <20>p<EFBFBD>f<EFBFBD>B<EFBFBD><42><EFBFBD>O<EFBFBD><4F><EFBFBD><EFBFBD><EFBFBD>蕥<EFBFBD><E895A5>
|
||
im = im(cv::Rect(offset, offset, image_size.width, image_size.height));
|
||
}
|
||
}
|
||
|
||
cv::Mat process_image;
|
||
if (input_plane == 1)
|
||
{
|
||
// <20>č\<5C>z<EFBFBD><7A><EFBFBD><EFBFBD><EFBFBD>P<EFBFBD>x<EFBFBD>摜<EFBFBD><E6919C>CreateZoomColorImage()<29>ō쐬<C58D><EC90AC><EFBFBD><EFBFBD><EFBFBD>F<EFBFBD><46><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>}<7D>[<5B>W<EFBFBD><57><EFBFBD>Ēʏ<C492><CA8F>̉摜<CC89>ɕϊ<C995><CF8A><EFBFBD><EFBFBD>A<EFBFBD><41><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||
|
||
std::vector<cv::Mat> color_planes;
|
||
CreateZoomColorImage(float_image, image_size, color_planes);
|
||
|
||
float_image.release();
|
||
|
||
color_planes[0] = im;
|
||
im.release();
|
||
|
||
cv::Mat converted_image;
|
||
cv::merge(color_planes, converted_image);
|
||
color_planes.clear();
|
||
|
||
cv::cvtColor(converted_image, process_image, ConvertInverseMode);
|
||
converted_image.release();
|
||
}
|
||
else
|
||
{
|
||
std::vector<cv::Mat> planes;
|
||
cv::split(im, planes);
|
||
|
||
// RGB<47><42><EFBFBD><EFBFBD>BGR<47>ɒ<EFBFBD><C992><EFBFBD>
|
||
//std::swap(planes[0], planes[2]);
|
||
|
||
cv::merge(planes, process_image);
|
||
}
|
||
|
||
cv::Mat alpha;
|
||
if (float_image.channels() == 4)
|
||
{
|
||
std::vector<cv::Mat> planes;
|
||
cv::split(float_image, planes);
|
||
alpha = planes[3];
|
||
|
||
cv::resize(alpha, alpha, image_size, 0.0, 0.0, cv::INTER_CUBIC);
|
||
}
|
||
|
||
// <20>A<EFBFBD><41><EFBFBD>t<EFBFBD>@<40>`<60><><EFBFBD><EFBFBD><EFBFBD>l<EFBFBD><6C><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A<EFBFBD>A<EFBFBD><41><EFBFBD>t<EFBFBD>@<40><><EFBFBD>t<EFBFBD><74><EFBFBD><EFBFBD><EFBFBD>ăJ<C483><4A><EFBFBD>[<5B><><EFBFBD><EFBFBD><EFBFBD>A<EFBFBD><41><EFBFBD>t<EFBFBD>@<40>̉e<CC89><65><EFBFBD><EFBFBD>
|
||
if (!alpha.empty())
|
||
{
|
||
std::vector<cv::Mat> planes;
|
||
cv::split(process_image, planes);
|
||
process_image.release();
|
||
|
||
planes.push_back(alpha);
|
||
|
||
cv::Mat w2 = planes[3];
|
||
|
||
planes[0] = (planes[0]).mul(1.0 / w2);
|
||
planes[1] = (planes[1]).mul(1.0 / w2);
|
||
planes[2] = (planes[2]).mul(1.0 / w2);
|
||
|
||
cv::merge(planes, process_image);
|
||
}
|
||
|
||
const cv::Size_<int> ns(image_size.width * shrinkRatio, image_size.height * shrinkRatio);
|
||
if (image_size.width != ns.width || image_size.height != ns.height)
|
||
cv::resize(process_image, process_image, ns, 0.0, 0.0, cv::INTER_LINEAR);
|
||
|
||
cv::Mat write_iamge;
|
||
process_image.convertTo(write_iamge, CV_8U, 255.0);
|
||
process_image.release();
|
||
|
||
/*
|
||
ret = WriteMat(write_iamge, output_file);
|
||
if (ret != eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
write_iamge.release();
|
||
*/
|
||
|
||
{
|
||
const auto width = write_iamge.size().width;
|
||
const auto stride = write_iamge.step1();
|
||
for (int i = 0; i < write_iamge.size().height; i++)
|
||
memcpy(dest + width * i, write_iamge.data + stride * i, stride);
|
||
}
|
||
|
||
return eWaifu2xError_OK;
|
||
}
|
||
|
||
const std::string& Waifu2x::used_process() const
|
||
{
|
||
return process;
|
||
}
|