GodMode9/source/fatfs/diskio.c
d0k3 47a09f8353 Remove Multi EmuNAND stuff - this can't be supported
... but still leave a door open so it can be reintroduced
2016-02-27 14:45:07 +01:00

291 lines
9.2 KiB
C

/*-----------------------------------------------------------------------*/
/* Low level disk I/O module skeleton for FatFs (C)ChaN, 2014 */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be */
/* attached to the FatFs via a glue function rather than modifying it. */
/* This is an example of glue functions to attach various exsisting */
/* storage control modules to the FatFs module with a defined API. */
/*-----------------------------------------------------------------------*/
#include "diskio.h" /* FatFs lower layer API */
#include "aes.h"
#include "platform.h"
#include "sdmmc.h"
#define TYPE_SDCARD 0
#define TYPE_SYSNAND 1
#define TYPE_EMUNAND 2
#define SUBTYPE_CTRN_O 0
#define SUBTYPE_CTRN_N 1
#define SUBTYPE_TWLN 2
#define SUBTYPE_TWLP 3
#define SUBTYPE_NONE 4
typedef struct {
BYTE type;
BYTE subtype;
} FATpartition;
typedef struct {
DWORD offset;
DWORD size;
DWORD mode;
BYTE keyslot;
} SubtypeDesc;
FATpartition DriveInfo[13] = {
{ TYPE_SDCARD, SUBTYPE_NONE }, // 0 - SDCARD
{ TYPE_SYSNAND, SUBTYPE_CTRN_O }, // 1 - SYSNAND O3DS CTRNAND
{ TYPE_SYSNAND, SUBTYPE_TWLN }, // 2 - SYSNAND O3DS TWLN
{ TYPE_SYSNAND, SUBTYPE_TWLP }, // 3 - SYSNAND O3DS TWLP
{ TYPE_EMUNAND, SUBTYPE_CTRN_O }, // 4 - EMUNAND O3DS CTRNAND
{ TYPE_EMUNAND, SUBTYPE_TWLN }, // 5 - EMUNAND O3DS TWLN
{ TYPE_EMUNAND, SUBTYPE_TWLP }, // 6 - EMUNAND O3DS TWLP
{ TYPE_SYSNAND, SUBTYPE_CTRN_N }, // *1 - SYSNAND N3DS CTRNAND
{ TYPE_SYSNAND, SUBTYPE_TWLN }, // *2 - SYSNAND N3DS TWLN
{ TYPE_SYSNAND, SUBTYPE_TWLP }, // *3 - SYSNAND N3DS TWLP
{ TYPE_EMUNAND, SUBTYPE_CTRN_N }, // *4 - EMUNAND N3DS CTRNAND
{ TYPE_EMUNAND, SUBTYPE_TWLN }, // *5 - EMUNAND N3DS TWLN
{ TYPE_EMUNAND, SUBTYPE_TWLP }, // *6 - EMUNAND N3DS TWLP
};
SubtypeDesc SubTypes[4] = {
{ 0x05CAE5, 0x179F1B, AES_CNT_CTRNAND_MODE, 0x4 }, // O3DS CTRNAND
{ 0x05CAD7, 0x20E969, AES_CNT_CTRNAND_MODE, 0x5 }, // N3DS CTRNAND
{ 0x000097, 0x047DA9, AES_CNT_TWLNAND_MODE, 0x3 }, // TWLN
{ 0x04808D, 0x0105B3, AES_CNT_TWLNAND_MODE, 0x3 } // TWLP
};
static bool mode_n3ds = false;
static u32 emunand_base_sector = 0x000000;
/*-----------------------------------------------------------------------*/
/* Get counter for NAND AES decryption */
/*-----------------------------------------------------------------------*/
u32 GetNandCtr(u8* ctr, u32 sector)
{
static const u8* version_ctrs[] = {
(u8*)0x080D7CAC,
(u8*)0x080D858C,
(u8*)0x080D748C,
(u8*)0x080D740C,
(u8*)0x080D74CC,
(u8*)0x080D794C
};
static const u32 version_ctrs_len = sizeof(version_ctrs) / sizeof(u32);
static u8* ctr_start = NULL;
if (ctr_start == NULL) {
for (u32 i = 0; i < version_ctrs_len; i++) {
if (*(u32*)version_ctrs[i] == 0x5C980) {
ctr_start = (u8*) version_ctrs[i] + 0x30;
}
}
// If value not in previous list start memory scanning (test range)
if (ctr_start == NULL) {
for (u8* c = (u8*) 0x080D8FFF; c > (u8*) 0x08000000; c--) {
if (*(u32*)c == 0x5C980 && *(u32*)(c + 1) == 0x800005C9) {
ctr_start = c + 0x30;
break;
}
}
}
if (ctr_start == NULL) {
return 1;
}
}
// the ctr is stored backwards in memory
if (sector >= (0x0B100000 / 0x200)) { // CTRNAND/AGBSAVE region
for (u32 i = 0; i < 16; i++)
ctr[i] = *(ctr_start + (0xF - i));
} else { // TWL region
for (u32 i = 0; i < 16; i++)
ctr[i] = *(ctr_start + 0x88 + (0xF - i));
}
// increment counter
add_ctr(ctr, sector * (0x200/0x10));
return 0;
}
/*-----------------------------------------------------------------------*/
/* Get Drive Status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (
__attribute__((unused))
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
return RES_OK;
}
/*-----------------------------------------------------------------------*/
/* Inidialize a Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize (
__attribute__((unused))
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
mode_n3ds = (GetUnitPlatform() == PLATFORM_N3DS);
sdmmc_sdcard_init();
return RES_OK;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
__attribute__((unused))
BYTE pdrv, /* Physical drive nmuber to identify the drive */
BYTE *buff, /* Data buffer to store read data */
DWORD sector, /* Sector address in LBA */
UINT count /* Number of sectors to read */
)
{
if ((pdrv > 0) && mode_n3ds) // is this really set at this point?
pdrv += 6;
BYTE type = DriveInfo[pdrv].type;
if (type == TYPE_SDCARD) {
if (sdmmc_sdcard_readsectors(sector, count, buff)) {
return RES_PARERR;
}
} else {
BYTE subtype = DriveInfo[pdrv].subtype;
DWORD isector = SubTypes[subtype].offset + sector;
DWORD mode = SubTypes[subtype].mode;
BYTE ctr[16] __attribute__((aligned(32)));
if (type == TYPE_SYSNAND) {
if (sdmmc_nand_readsectors(isector, count, buff))
return RES_PARERR;
} else if (sdmmc_sdcard_readsectors(emunand_base_sector + isector, count, buff)) {
return RES_PARERR;
}
if (GetNandCtr(ctr, isector) != 0)
return RES_PARERR;
use_aeskey(SubTypes[subtype].keyslot);
for (UINT s = 0; s < count; s++) {
for (UINT b = 0x0; b < 0x200; b += 0x10, buff += 0x10) {
set_ctr(ctr);
aes_decrypt((void*) buff, (void*) buff, 1, mode);
add_ctr(ctr, 0x1);
}
}
}
return RES_OK;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
#if _USE_WRITE
DRESULT disk_write (
__attribute__((unused))
BYTE pdrv, /* Physical drive nmuber to identify the drive */
const BYTE *buff, /* Data to be written */
DWORD sector, /* Sector address in LBA */
UINT count /* Number of sectors to write */
)
{
if ((pdrv > 0) && mode_n3ds)
pdrv += 6;
if (DriveInfo[pdrv].type == TYPE_SDCARD) {
if (sdmmc_sdcard_writesectors(sector, count, (BYTE *)buff)) {
return RES_PARERR;
}
} else {
BYTE subtype = DriveInfo[pdrv].subtype;
DWORD isector = SubTypes[subtype].offset + sector;
DWORD mode = SubTypes[subtype].mode;
BYTE ctr[16] __attribute__((aligned(32)));
if (GetNandCtr(ctr, isector) != 0)
return RES_PARERR;
use_aeskey(SubTypes[subtype].keyslot);
for (UINT s = 0; s < count; s++) {
for (UINT b = 0x0; b < 0x200; b += 0x10, buff += 0x10) {
set_ctr(ctr);
aes_decrypt((void*) buff, (void*) buff, 1, mode);
add_ctr(ctr, 0x1);
}
}
/*if (type == TYPE_SYSNAND) {
if (sdmmc_nand_writesectors(isector, count, buff))
return RES_PARERR;
} else if (sdmmc_sdcard_writesectors(emunand_base_sector + isector, count, buff)) {
return RES_PARERR;
}*/
// stubbed, better be safe!
}
return RES_OK;
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
#if _USE_IOCTL
DRESULT disk_ioctl (
__attribute__((unused))
BYTE pdrv, /* Physical drive nmuber (0..) */
__attribute__((unused))
BYTE cmd, /* Control code */
__attribute__((unused))
void *buff /* Buffer to send/receive control data */
)
{
if ((pdrv > 0) && mode_n3ds)
pdrv += 6;
switch (cmd) {
case GET_SECTOR_SIZE:
*((DWORD*) buff) = 0x200;
return RES_OK;
case GET_SECTOR_COUNT:
if (DriveInfo[pdrv].type == TYPE_SDCARD) {
*((DWORD*) buff) = getMMCDevice(1)->total_size;
} else {
*((DWORD*) buff) = SubTypes[DriveInfo[pdrv].subtype].size;
}
return RES_OK;
case GET_BLOCK_SIZE:
*((DWORD*) buff) = 0x2000;
return RES_OK;
case CTRL_SYNC:
// nothing to do here - the disk_write function handles that
return RES_OK;
}
return RES_PARERR;
}
#endif